
Issue 60 2012
Free Commodore Computer Magazine

In TEXT, PDF, SEQ, D64 and HTML And Ebook formats
www.commodorefree.com

Page 2

www.commodorefree.com

CONTENTS
EDITORIAL PAGE 2

“You cant get more Stone cold cooler than that”!

NEWS PAGE 5
 - DMS 64 Released
 - C64 Studio 2.1 Released
 - Old-School Hacker Movie

NEWS PAGE 7
 - MorphOS: OpenOffice Viewer 0.0.5
 - Timberwolf for AMIGA OS
 - Universal C64 Cartridge

NEWS PAGE 8
 - Hollywood 5: Infinity Out Now!

NEWS PAGE 11
 - Audio Evolution 4 Now Freeware
 - CodeAudio for AmigaOS
 - Retro Wallpapers

NEWS PAGE 12
 - NewsTek Episode #12
 - jAMOS

NEWS PAGE 12
 - DIAG264

Commodore FREE Review: Wyvern PAGE 14

Finding Program Start and Endpoint PAGE 16
By Commodoreman

Rediscovering CP/M - Part 2 PAGE 17
By Commoodreman

Assembler Programming PAGE 24
By Shaun Bebbington

Page 3

www.commodorefree.com

EDITORIAL
ELCOME
Hi and welcome to another late edition of Commodore Free
magazine, thrown together in much hast and with very little
skill involved

Especially welcome this issue are the new readers who
recently contacted me, (they wished to be anonymous)
hopefully the magazine is catering to your needs and you said
you enjoyed reading the articles and are busily back tracking
through the old issues in true retro style. Or is that a retro
style-e

HELP me if you can
I haven’t received much in the way of a response to the “cry
for help” I issued, where I said I needed reviewers and
information on the Commodore 264 series of machines (these
are the Commodore 16 and plus 4 and C116 machines). If you
are a user of these machines and feel passionate enough to
write something for others to read please get in touch as I
would like to put together a “264 Special issue”.

PICK ME UP BEFORE YOU GO GO
I have recently become fascinated with the TV programme

“American Pickers”, if you haven’t seen it yet I would suggest
you look out for it. These guys hunt through “collectors some
may call them obsessive hoarders but I suspect all commodore
users are guilty of this, I know I am, heck I cant even open the
door on my “computer room” because as my wife says its full
of JUNK)” homes trying to find old items to sell on and
therefore try to make a profit. Although picking isn’t
something new, the fact we can now follow 2 guys around
(albeit by watching a TV show) and see some of these eccentric
collections I find fascinating. If you are wondering what I think
all the fuss is about then head over to the History channel and
click on videos http://www.history.com/ I know it works in the
Uk and America but am not sure if you can view these videos
in other parts of the world though, maybe using a Uk proxy
server may assist you. The items uncovered are things like 100
year old bikes, farming implements, motoring items.

Other series of note for me are Pawn stars, as in pawning an
item to get funds, and American restorations where they take
old items and make them look like new, (although I am not to
sure about making every old item look new, to me some items
are better rusty and old looking) but the skill involved is well
worth watching. Nothing to do with Commodore but on Pawn
stars they did get an old Apple II computer to pawn in and they
Pawned it for $100 the girl really wanted $300. Anyways let’s
look what’s in this issue

I also like “storage wars” were people bid on old storage units
(the owners can’t be found) very exciting.
Errm ok then what’s in the issue................

In this issue then
We have more news, and a review of WYVERN THE GAME, we
continue our CP/M and Assembler tutorials I haven’t had any
feedback on these, so I presume everyone is following along
and digesting the information. Finally Commodore man tells us
how to Finding the Start and Endpoint of a Program

Thanks for reading and comments as well as submissions are
always welcome

Regards
Nigel (acting Editor Commodore Free)
www.commodorefree.com

Page 5

www.commodorefree.com

DMS 64, RELEASED

DMS 64, creates images of Commodore 64 disks and can split
the image into multiple files. Copyright Donncha O Caoimh,
http://ocaoimh.ie/

Version 1.0 originally written in 1994 but was fixed and spread
online in Feb 2012: http://ocaoimh.ie/2012/02/22/the-
commodore-64-disk-masher-c64-dms/

To create a disk image with DMSREADER. You'll need 2 blank
disks or 2 D64 files to write to. Multiple files with the
extension .DMS will be created.

Recreate the original disk by using DMSWRITER.

C64 Studio 2.1 released

C64 Studio is a .NET based IDE written by Georg Rottensteiner

This app supports project based C64 assembly or Basic V2. The
internal assembler is using the ACME syntax.

In connection with Vice the IDE allows you to debug through
your code and watch variables/memory locations, registers
and memory. Any other emulator can be set up as well if it's
start able via runtime arguments.

C64 Studio allows you to compile to raw binary, .prg, .t64, .d64
or cartridge format (.bin and .crt for 8k and 16k)

Additionally to this C64 Studio comes with a charset, sprite and
media editor.

It features for now:
-ACME like syntax
-solution (project) explorer (collection of files)
-Compile to plain,.prg,.t64,.d64
-Cartridge support for 8k and 16k cartridges (to bin or crt)
-Debugging through your code

-Variable watch (memory or value)
-Memory view
-Register view
-Charset editor
-Sprite editor
-Media Manager (.t64/.d64)

Get it here:
http://www.georg-rottensteiner.de/files/C64StudioRelease.zip

NEWS

Old-School Hacker Movie Set In Melbourne Needs Your Help

http://www.gizmodo.com.au/2012/02/old-school-hacker-
movie-set-in-melbourne-needs-your-help/

It’s not every day someone asks you for your old Commodore
64 to help recreate 1980s Melbourne for a period piece on
hackers. Yet, that’s exactly what the makers of Underground, a
direct-to-TV movie currently in the works for Channel Ten, are
doing. So, have you got any aging hardware you’re willing to
part with?

Page 6

www.commodorefree.com

Page 7

www.commodorefree.com

NEWS
MorphOS: Document Viewer Version 0.0.5 OpenOffice

OpenOffice Viewer displays text and graphics in
OpenDocument format, which is used for instance by
OpenOffice. Changes in version 0.0.5:

- Pictures inside of OpenDocument text will now be detected
and displayed.

- Horizontal tabs are now interpreted correctly.
- Soft Page Breaks and Hard Page Breaks in OpenDocument
text will now be interpreted.

- The print routine for native data transfer (PostScript) is ready
and running.

- The temporary routine for TurboPrint support works.
- The GUI has been changed slightly (it looks better now).
- A guide has been written.

‐ The localization of the GUI in four languages (German, English,
Turkish and French) was performed.
- A bug in the routine images (OpenDocument Text) has been
fixed.

- A new icon has now been given to the program.

Download: OpenOfficeViewer_0.0.5.lha (10.2 MB)
http://world-of-
amiga.eu/download/OpenOfficeViewer_0.0.5.lha

New Timberwolf release for AMIGA OS

The Timberwolf team is proud to announce the immediate
availability of the first beta version of Timberwolf 4.0.1.
Timberwolf is an AmigaOS web browser based on
Firefox/Mozilla technology. This technology is more than just a
browser, it is an enabling technology, bringing powerful tools
such as html5, WebM, JavaScript, XUL, and more to AmigaOS
4.x. These are the building blocks for other applications as well,
such as the email client "Thunderbird" or the media centre

"Songbird".

This first beta release includes almost the full functionality of
the browser, allowing style-sheet enabled web browsing,
secure connections, use of Firefox® add-on and more.

Of course, being a beta, there are some limitations, such as
missing support for printing, sound, WebGL, and drag & drop.
Most importantly, no support for hardware accelerated
rendering is implemented yet. We are working on getting all
those features implemented over time. Current focus is on
stability and completeness.

Minimum Requirements:
AmigaOS 4.1 (Update 4) is required to run this version of
Timberwolf.

http://www.os4depot.net/?function=showfile&file=network/b
rowser/timberwolf.lha

http://www.friedenhq.org/index.php?option=com_content&vi
ew=article&id=56:new-timberwolf-release&catid=35:amigaos

UNIVERSAL C64 CARTRIDGE

A C64 cartridge with USB connection for uploading CRT files
from a PC and for fast turnaround time when developing
assembler programs for the C64 on a PC. The board contains a
MC9S08 microcontroller, a 128 Kbyte SRAM and a CPLD, which
can be programmed to emulate many cartridge types. With a
different firmware it can be used in standalone mode, without
a C64, for other applications as well, like a logic analyzer or a
motor controller.

Homepage:
http://www.ohwr.org/projects/c64cartridge/wiki/Wiki

http://www.ohwr.org/projects/c64cartridge

Page 8

www.commodorefree.com

NEWS
Hollywood 5: Infinity Out Now!

After two years of development, Airsoft Software is proud to
announce the immediate availability of Hollywood 5: Infinity
for AmigaOS and compatibles and Microsoft Windows. This is
a massive update which boasts over 120 new functions in
comparison to Hollywood 4.8 and brings along many new
features and general improvements. Highlights include the
ability to play video streams, full Internet and network support
(you could even run a server with Hollywood now!), support
for real vector graphics and vector image formats like SVG,
hardware accelerated double-buffering, inbuilt synthesizer
functions and much much more.

Hollywood 5: Infinity is undoubtedly the most advanced Amiga
multimedia application and on Windows, it is a fresh Indie
alternative to bloated authoring systems that need tons of
DLLs, memory, and hard-drive space. Hollywood is highly
stable, extremely easy to use and flexible, and used by many
creative people around the globe. A totally unique feature is
the ability to cross-compile native executables for many
different platforms including: AmigaOS3, AmigaOS4, WarpOS,
MorphOS, AROS (x86), Windows (x86 & PPC), and Linux (x86 &
PPC).

Here is a non-exhaustive list of new features in Hollywood 5:
-Video playback support
- Full Internet and network support
- Support for vector images like SVG
- Real vector graphics can now be used (Bézier curves etc.)
- Tons of new image manipulating functions (blur, sharpen,
gamma, oil paint...)

- Hardware accelerated double-buffering for 500% faster
drawing

- Inbuilt synthesizer for generating sounds on-the-fly
- Many functions for brush distortion (perspective, arc, polar...)
- New requester functions (font, colour, lister...)
- Hollywood can now compile for PowerPC Linux too!
- Many new functions for dealing with samples
- Great improvements to the layers system
- Real drop shadow and border support for layers
- Over 20 image filters that can be applied to layers
- Hardware accelerated image transformations
- Real time calculated effects for layers with filters
- New gradient types (radial, conical and multicolour)
- IPC functions for talking to other programs
- Platform independent localization support
- FPU support for 68k Amigas (improves speed dramatically
also on WinUAE!)

- Platform independent pattern matching
- Many new utility functions (MD5 checksum, string functions
etc.)

- Cross-platform public plugin interface for 3rd party
extensions

- More than 500kb of new documentation
- Manual is also available as a professionally typeset PDF now
(over 700 pages!)

- 14 new example scripts (over 80 in total)

- Standard library set encompasses over 600 functions now!
- Lots of other changes, optimizations and bug fixes

Hollywood 5: Infinity is the ultimate Multimedia experience
and a must-have for all creative people. Hollywood is available
on a CD-ROM and as a download version for AmigaOS
compatible systems and for Microsoft Windows. The CD-ROM
version is delivered in a nice Digipak (see photo). If you order
the download version, you will have to download an ISO image
which you need to burn on CD-R then. If you already own
Hollywood, you can buy a discounted upgrade version.
Customers, who have bought Hollywood 4.8 after January 1st,
2012, can apply for a free upgrade. Screenshots of Hollywood
5 are available on the Airsoft Software homepage.
http://www.airsoftsoftwair.com/

Hollywood is the ultimate bridge between all the different
AmigaOS compatible platforms and the other three modern
desktop systems, Windows, Mac OS, and Linux! With
Hollywood, you can save programs for all those platforms. You
do not have to own AmigaOS4 or AROS, you can save
programs for these platforms also from your AmigaOS3
installation! You do not need to have Mac OS X, you can still
compile your programs for it using your AmigaOS or MorphOS
installation. Only Hollywood makes it possible. If you want to
learn more about Hollywood, please visit the official
Hollywood portal at http://www.hollywood-mal.com/ which
also has a forum for all questions concerning Hollywood or the
Airsoft Software homepage http://www.airsoftsoftwair.com/

All this makes Hollywood The Cross-Platform Multimedia
Application Layer. Join the Multimedia revolution and get your
personal copy of Hollywood 5: Infinity now!

Page 11

www.commodorefree.com

NEWS
Audio Evolution 4 Now Freeware

News from DaveAE
The full version of the audio hard disk recording software
Audio Evolution 4 for OS4 has been uploaded to OS4depot!
The source code and AROS/MorphOS versions will follow later.

I hereby wish to thank all customers who have purchased AE4
(for any of the above platforms) in the past.

All the best,
Davy
For successors of Audio Evolution on other platforms (Android,
Windows, OSX), please visit the link below.

http://www.audio-evolution.com

New CodeAudio release by OnyxSoft for classic AmigaOS

OnyxSoft releases an update of CodeAudio!

http://www.onyxsoft.se/codeaudio.html

CodeAudio v3.10 - (68k)
 Full-featured GUI for audio encoders
(MP3/OGG/FLAC/AAC/A8) with a wizard and CD,
CDDB/FreeDB support.

- The Wizard can now skip already encoded files from for
example a half-encoded CD.

- Added a new converter and player for the Amiga optimized
A8 format.
- Reorganized the encoders/decoders/players into groups to
make it easier to overview.

- Changed the wizard Extra High mode to use stereo mode
instead of j-stereo.

- The wizard can now create recursive target directories.
- Made the subtask communication more robust which fixes
some auto download/update bugs.

- And more...

RETRO WALLPAPERS

http://retrovgm.wordpress.com/custom/wallpapers/

Wallpapers, Lock Screens & Backgrounds news from Retro
VGM
These are all fun ways in which we like to add our own
personal stamp on our mobile communications device of
choice from Windows Phone & Android to Blackberry &
iPhone we all have a preferred device of choice.
While it is nice to be able to snap a picture and then, without
any messing around, use that picture as our own wallpaper it’s
also fun to be able to use other pictures in order to really add
that personal touch.
So RETRO VGM have created a series of Retro Themed
Smartphone wallpapers in three different styles.

Style 1 – A simple enlargement with smoothing,
Style 2 – A classic style comic book ink shading applied,
Style 3 – Glowing Neon Edges.

feedback is appreciated regarding the styles that I have chosen
and not the actual choice of images, however if you would like
to see a particular game from the ZX Spectrum or Commodore
64 added then I will do my best to add them.

All the wallpapers are sized for WVGA screen resolution of
480×800 pixels. If your device supports a higher or lower
resolution you’ll still be able to use them but they might resize
oddly. Enjoy browsing, I will be adding more as time passes so
check back every now and again or even follow the blog.

Page 12

www.commodorefree.com

NEWS

JAMOS AMOS CROSSPLATFORM LANGUAGE

http://sourceforge.net/projects/javaamos/

Description
jAMOS is a cross platform, Java-based reimplementation of
François Lionet's AMOS BASIC on the Amiga.

Features
-BASIC-like interpreter based on MequaScript
-AMAL interpreter from jAMAL written in
Java

-Script editor utilising Java Swing
-AMAL-to-Java code translator and compiler
-Source is buildable in Eclipse and NetBeans
IDE out of the box

-Runnable from a single JAR file
-Reimplemented AMAL Environment
Generator

-Rudimentary Amiga-style screen and
scrolling engine

-Integrated AMOS sprite bank viewer
(AbkViewer)

-From MequaScript: Supports both BASIC-
style and C-style syntax (in progress)

-From MequaScript: Multiple jAMOS programs can be run
concurrently

-From MequaScript: The beginnings of simple object
orientation

NewsTek Roars Back to Life in 2012 with Episode #12

Information from NEWSTEK
NewsTek Roars back in 2012 with a brand new episode. Rich
and I are changing it up for this episode. I lined up an interview
with Allen Wolf, writer and producer of the hit film “In My
Sleep”. We do an in depth interview with Allen and learn his
process in writing and producing this psychological sleep
thriller in an Alfred Hitchcock style.

The Internet Movie Database lays out the story line of Marcus,
“..as he struggles with Parasomnia, a sleepwalking disorder that
causes him to do things in his sleep that he cannot remember
the next day. When he wakes up with blood on his hands and
a knife at his side, he is startled to hear that a close friend has
been found stabbed to death. Marcus frantically tries to put
the pieces together – could he have murdered his friend while
sleepwalking to hide a dark secret between them? The police
close in as Marcus investigates his own nocturnal activities,
desperate to figure out what happens after he goes to sleep.
His journey to uncover the truth leads him to a shocking
revelation.”

We talked with Allen about some of the experiences during the
filming of the movie. Also about some of his research about

“Parasomnia” and this sleep disorder. We also got some insight
about the process of making a movie in general. All in all a
really good interview about a thrilling movie. It’s the Sleeper
hit that you have not seen yet but need to. We are giving away
three “In My Sleep” Blu-ray /DVD Combo packs. Be sure to
listen to the episode to find out how to get in on the giveaway.

The Amiga is mentioned about 30:30 minutes into the show.

DiscreetFX is giving away three of Special Edition Blu-ray/DVD
Combos.
http://www.amazon.com/Sleep-Special-.../dp/B005UKFGWW

If you would like to be entered to win one of these send an e-
mail requesting it to the link below.
http://www.discreetfx.com/contact.html

Links
Amazon: http://www.amazon.com/Sleep-Special-
.../dp/B005UKFGWW
IMDB: http://www.imdb.com/title/tt0326965/
In My Sleep Website: http://inmysleep.com/
NewsTek: http://www.amigaz.org/2012/02/12/new...ng-
some-sleep/

Page 13

www.commodorefree.com

NEWS
DIAG264

DIAG264 is a system to search for defects in a Commodore
C16, C116 or Plus/4 computer. The system consist of a special
cartridge and several loop back connectors. With this system
you can test the following parts: RAM, ROM, I/O of the CPU
and TED registers. On the DIAG264 web page you can find a
very comprehensive manual how to test your computer

DESCRIPTION FROM THE WEBSITE
The design and operation of Diag264 is modelled closely on
the operation of the cartridges available for the 64/128 and
VIC-20. One of the aspects that I was most keen to copy was
the functionality of the Dead Test Cartridge of the 64. The
primary use of this cartridge was to find RAM issues in a
machine that otherwise appeared dead.

The majority of Commodores 8-bit offerings used DRAM chips
in either a 64k x 1 or 16k x 4 configuration. This usually meant
that any dead RAM chip would make the machine completely
inoperable, as the zero page ($0002-$00FF) and stack ($0100-
$01FF) are rendered practically unusable. The kernal start-up
routines in both the 64 and 264's make extensive use of the ZP
and implicitly rely on the stack upon the first execution of an
RTS instruction! This presents a problem for any normal
cartridge based diagnostic tool because we are dependent on
the kernal to hand over control to the cartridge ROM. The
Dead Test cartridge avoids this problem by making use of the
64's rarely used Ultimax mode, which enables an external
cartridge ROM to replace the Kernal of the host machine and
therefore bypass the normal start-up routines, making it a
superior tool for identifying RAM problems on an otherwise

‘dead’ system.

The 264 architecture does not include any way of auto-booting
into an external ROM without trying to pull some dirty tricks
with the address lines. So it becomes a trade-off between the
conveniences of a cartridge versus the extra benefits of
booting straight into the diagnostic. Not being a fan of
compromise, the Diag264 ROM can be compiled for either
cartridge or kernal.

The kernal option is a simple drop in replacement of the kernal
ROM, which is the 28-pin ROM chip with the identifier

beginning with 318004 (PAL) or 318005 (NTSC.) The cartridge
option involves sacrificing a standard commercial Commodore
C16/Plus cartridge (I used Strange Odyssey) unless you are
lucky enough to have a supply of cartridge blanks. You will
need to remove the ‘low’ ROM and install a 28-pin DIL socket
in its place, as seen in my cartridge in Figure 1.

The TED chip itself supports both NTSC and PAL standards,
controlled by bit 6 of register 7. NTSC and PAL machines
therefore have slightly different kernals to correctly set the
state of this bit, and also some other small modifications to
take into account timing differences. When running from a
cartridge, DIAG264 could query the installed kernal to
determine whether it should be running in NTSC or PAL mode.
This could be done by checking the value of $F33F which
contains the default for TED register 7. As of version 0.2B, this
is not implemented, and it is not possible at all when running
from a kernal replacement. For this reason I have made both
NTSC and PAL versions of DIAG264 available.

http://inchocks.co.uk/commodore/Diag264/HTMLManual/Dia
g264.htm

Figure 1 - Cartridge Mod

Page 14

www.commodorefree.com

Wyvern
COMMODORE FREE GAME REVIEW

http://tnd64.unikat.sk/friends/Wyvern.zip

Released by :
ColorClashSoftware, The New Dimension

Credits :
Code Chris Yates

Jon Wells
Music Richard of Blazon, Psytronik Software, Scene
 World Magazine, The New Dimension
Graphics ColorClashSoftware
Design ColorClashSoftware
Text Richard of Blazon, Psytronik Software, Scene
 World Magazine, The New Dimension
Concept ColorClashSoftware
Loader Martin Piper

WYVERN . THE STORY
across the land of Prodigia lived a holy dragon (you) called,
WYVERN; you rest in a small cave sleeping. Far from this land
lies a castle, in which an EVIL DRAGON LORD lives as ruler. He
sends an army of his minions to capture wyvern and took him
to the dungeons.

WYVERN suddenly wakes up and finds he takes a deep breath
and MELTS the SHACKLES in which at the time was restraining
him from his escape. Then he breaks out of the huge dungeon
to make his ESCAPE.

Wyvern sets his sights for freedom, but an army of colourful
dragons have spotted him.

WYVERN THE GAME
You are WYVERN you have been ABDUCTED by the EVIL
DRAGON LORD who wants to control the world of PRODIGIA.
You break out of the shackles, by breathing fire at them and
ESCAPE the DUNGEON inside the castle. Unfortunately you are
spotted by an evil dragon, and now an army of them have
been set free to STOP ‘you.

Your quest is to ESCAPE from the castle of the evil lord.
Escaping the castle will be quite a CHALLENGE as there are
ENEMY dragons and minions Out there to stop you.
BREATHING FIREBALLS at the enemies should hopefully do the
trick.

During your escape, you need to pick up bottles of POTION, to
BOOST up your score, avoid CRASHING into DEADLY
background and escape before the dragon lord CAPTURES
you and BANISHES you in the dungeon FOREVER!

COMMODORE FREE
The game downloads as a Zip file and has a D64 and Tap
version

loading the D64 gives a TND style into

With some suitably tuneful music and thumping along style
baseline, of course pressing space starts the game loading
With some very squelchy square wave music – and a bouncy
melody line, you can see this is a SEUCK from the information

menu or title screen.
Pressing the joystick fire button (connected to port 2) starts
the game

Page 15

www.commodorefree.com
I am unsure how the music fits in with the game; but the music
sounds are good and the tune holds itself up well, I quite liked
the bass drum kick and the snare in the main game very realis-
tic.
The games backgrounds are very colourful and there is a lot
going on screen (background wise at any rate) with the design
of the columns etc it’s easy enough to see where you are and
what you are supposed to kill or avoid. The main character
sprite is dragon like creature in green and the attacking sprites
(also dragons) move in the usual predetermined SEUCK patter
completing this level is just a matter of moving to the right
place on screen and pressing fire, until you get to the end. The
enemy movements should have been a little more random but
again this is more a SEUCK limitation than a game design, how-
ever some of the enemies could have moved differently.
The next level is mealy moving through a winding corridor with
nothing to shoot and is over quite quickly, the bricks look like
bricks and erm...

Well I am struggling a little here it’s a corridor or tunnel whatev-
er you want to call it.
After that it’s more of the same with the creature’s following a
new path wave and increasing in difficulty by some considera-
ble amount; and it’s here I come stuck, in my skills as a dragon
killing other items on screen. The level of difficulty seems to
jump from very easy to very hard.

The games looks are great, not sure about the main sprites but
the backgrounds are great detailed and very colourful, and al-
though its nothing that could be in any way called original, it’s
another welcome sideways SEUCK blaster with decent music
although I wondered how the music .

SCORES
Graphics 7/10
Music 7/10
Playability 5/10
Lastability 5/10

Overall 6/10

INFORMATION
At the start of the game as soon as the colour lettering disap-
pears start to move right quickly as there is a bonus right at
the screen edge shown in this pictures with a GREEN circle to
highlight it

The game has some odd bugs for example if you die while
crashing into the wall /maze area in level 2 the screen still
scrolls and you re-emerge inside the bricks moving will kill you
! However just leaving the creature there and he will eventual-
ly die anyway? Very annoying. It isn’t every time and I have no-
ticed the same problem later in the game, also on level 3 I can
see a bonus to collect I collect this and the game seems to
jump back and I am playing the same part of the level over and
over again.

Here is what Richard Baylis had to say about this particular
problem
I noticed what Christian did for level 3. I think he was trying to
implement a trick that was to make the game repeat a section
twice/three times the game would restart that level before
moving on to the next stage. Sometimes this is a clever trick in
SEUCK (Due to memory restrictions of the editor). Then after
this has happened, the game moves on to the final level. :)

Page 16

www.commodorefree.com

Finding the Start and Endpoint of a Program
(On a Commodore computer using a Monitor program)

by Commodoreman (c)

Have you ever wondered where a computer program is stored
after you “load” it in the computer? Have you ever been given
the place in RAM where a program starts–but wonder where it
ends? How much RAM is actually being used?

If you have ever asked yourself this question, but never had
the experience or knowledge with the Commodore computer,
this article will provide a way to figure that one out. It will be
easier for you 128 and Plus/4 owners, since the 128 and Plus/4
has a built-in monitor readily available. If you have a VIC-20 or
a 64, you’ll need access to a monitor program. (You club
members have access to a few in the Library).

I will be giving the example using a Commodore 128 in 64
mode. I will be using the Commodore Assembler Development
System software which has two monitor programs available.

If you are using 128 mode, similar results can be obtained
using the built-in monitor (just turn on the 128 in 128 mode
and type M-O-N-I-T-O-R followed by the Return key). Just be
sure to account for the differences in how the 128 handles
RAM.

I’ll be giving memory locations in hex with the decimal
equivalent in brackets–that should make it easier for those
who are still learning what all this hex stuff means.

Let’s say you’re a beginning assembly or machine language
programmer. You’ve just created a small utility program and
would like to place it in the RAM area between $C000 and
$CFFF (49152 to 53247). If you are using the Commodore
Assembler Development software, you probably know that the
Editor loads into RAM starting at location $C000 (49152). This
is known because whenever a SYS command is used to start a

program, the start address (or beginning point) is also used.
For me, I wanted to know where this program ended so I could
cram in more programs into this free area (49152-53247 is not
used by BASIC).

To find out where Editor starts and ends, there is a neat little
trick that can be used to make it a lot easier. Sometimes there
is lots of meaningless stuff “stored” in RAM. We will fill the
RAM area between $C000 (49152) and $CFFF (53247) with a
bunch of zeros. This will make it easy to identify where the
program ends.

Type in and run the following little program in BASIC:

10 FOR I=49152 TO 53247
20 POKE I,0:REM THIS IS A ‘ZERO’
30 NEXT I
RUN

READY.

This little loop is all we need to fill the area we want with zeros.
It can also be modified to fill any area in RAM.

Next, we will load the Editor program:

LOAD”EDITOR64",8,1

SEARCHING FOR EDITOR64
LOADING
READY.
SYS 49152

COMMODORE 64 EDITOR V072982
(C) 1982 BY COMMODORE BUSINESS
MACHINES

READY.

Next we need to select one of the
monitor programs. Note: Because we
are using RAM areas $C000- (49152 -),
we cannot use MONITOR$C000 (that
would erase Editor64). So we will use
MONITOR$8000. (If you get an ?OUT OF
MEMORY ERROR, just type NEW and key
in the following:)

LOAD”MONITOR$8000",8,1

The Following will be displayed:

SEARCHING FOR MONITOR$8000
LOADING
READY.
SYS 32768

Page 17

www.commodorefree.com

B*
PC SR AC XR YR SP
 .;803E 32 00 83 00 F6
 .

Now we will use the .D (disassemble) command to view the
RAM starting at $C000 (49152).

.D C000

., C000 A9 00 LDA #$00

Notice that RAM location $C000 (49152) to $C001 holds the
values ‘A9' and ‘00'? LDA #$00 means to Load the Accumulator
with the value 0 (zero), and it took two bytes of RAM to do it.
Use the cursor down to scroll to the next memory address.

The next RAM address is C002. Notice that there is something
stored here too. This will continue to be the case for a while.
Hold down the cursor down key until you get a bunch of lines
with 00 and BRK in them.

The last line I get is for RAM location $C647 (50759) and takes
up three bytes to $C649 (50761). I know this because the next
line displayed is C64A.

WHAM-O!! There it is! It is safe to assume that the EDITOR64
program ends at $C64A (50762). Since we placed a bunch of
zeroes in this area of RAM, loading the EDITOR64 program
changes the values in a certain segment. By checking to see
what has changed, we find out how much RAM has been

“disturbed”. So we can place our next program into the RAM
location starting at $C64B (50763).

Remember, always make sure that you count a BRK at the end.
This tells the computer that this is where the program ends (so
don’t overwrite it!). The BRK statement in Assembly/Machine
language is equivalent to the END statement in BASIC.

There ya go! Happy programming!

Rediscovering Commodore CP/M
by: Commodoreman ©

PART 2
Welcome to Part 2 – Rediscovering Commodore CP/M.

 In this article I am dividing this into two sections: SETUP and
FIRING UP COMMODORE CP/M MODE.

Since I cannot guess what anyone else reading this article has
access to, I will try to use more than one type of system
configuration. However, I will start with what I have listed
below, and later use different combinations and hopefully
most readers will be able to follow along. I’ve also decided to
do more of a journal type entry and writing things down as I go.
Things could get a little messy without an “organized”
approach, but hopefully somebody out there can glean
something useful.

Section 1: SETUP
I have assembled the following:

System configuration:
128D
1701 Monitor (40 column mode)
Drive 8: Built-in 1571
Drive 9: 1541
Drive 10: 1581

Other available and resources:
1902 Monitor (80 column mode)

Another 1571 drive

1750 REU
Commodore CP/M 3.0 System Boot Disk
Program disk: the genealogy program mentioned
Misc. CP/M formatted disks I had stored and other blank disks.
Commodore 128D System Guide
Commodore 128 Programmer’s Reference Guide
Digital Research book (The one I bought from a former club
member)
The Internet

I will start with the initial setup and then use any of the other
items listed as the need arises. I have noticed that there are
some internet sites that have programs, but I have not as of
yet tried any of them. That might be a good start too. I have a
feeling that the internet will play an important role here as
well. Also, somewhere in my collection I have some
miscellaneous Z80 programming books – might be useful after
I run through the basics.

Firing up CP/M Mode
CP/M 3 is the version available to the Commodore 128. The
Commodore 64 did have a cartridge with version 2.2, but from
what I understand, it was not as functional. I'll stick with
version 3 on the 128 (yeah, somewhere I do have a cartridge
for the 64 – wonder where it is...). I will have to be sure any
programs I have now or in the future will be for version 3.
I inserted the System Disk into the drive and I fired up the 'ol
128. Here's what I got...

Page 18

www.commodorefree.com

AMIGA FOREVER AND COMMODORE 64 FOREVER
Amiga Forever

http://www.amigaforever.com
http://www.facebook.com/AmigaForever

C64 Forever
http://www.c64forever.com

http://www.facebook.com/C64Forever
RetroPlatform Project

http://www.retroplatform.com

Page 19

www.commodorefree.com

http://www.cmdweb.de/
Here you find information about the SuperCPU, FD disk drive, HD series, JiffyDOS and

RAMLink. To order, pick your closest distributor.
Furthermore, you can visit our About CMD section or the Download area.

Welcome to the home of the Commodore Computer Club UK. We have set up to
support all popular Commodore 8-bit computers, from the Commodore (CBM)

PET range, through to the C128, so if you have a C64, VIC-20, C16, Plus/4 or even
a C64DTV, and would like to know more about the club, please read the club

FAQs or visit our forums if you have any further questions.

www.commodorecomputerclub.co.uk/

Page 20

www.commodorefree.com

Page 21

www.commodorefree.com

Golden Age of Video Games:
The Birth of a Multi billion
Dollar Industry [Paperback]

 Roberto Dillon (Author)

Product details
Paperback: 209 pages

Publisher: A K Peters/CRC
Press; 1 edition (28 April 2011)

Language English
ISBN-10: 1439873232

ISBN-13: 978-1439873236

On the Way to Fun:
An Emotion-Based Approach to

Successful Game Design

Roberto Dillon (Author)

Product details
Paperback: 200 pages

Publisher: A K Peters/CRC Press
(8 Mar 2010)

Language English
ISBN-10: 1568815824

ISBN-13: 978-1568815824

Page 22

www.commodorefree.com

CP/M 3.0 On the Commodore 128 1 Aug 85
 40 column display

A> (blinking cursor)

 R A01 10

Well, I remember A> had something to do with the current
default drive, so I entered the following: B: <RETURN> and
this is what was displayed...

CP/M Error On B: Disk I/O
BDOS Function = 14

I know this is an error code – Time to hit the manuals!

While I'm looking for the error code, I will look up what the R
A01 10 displayed at the bottom of the screen means (I know,
all you CP/M veterans are probably laughing by now...). Oh,
also, I noticed that at the bottom of the screen, it has changed
from R A01 10 to R B03 00 (Could this be a hint as something
to do with disk access?).

Accessing the Manuals…
According to the Commodore 128D User’s Guide, the above
display is deciphered as follows:

This is how CP/M looks on the 128 in 40 column mode. The
screen is divided in two parts with the left half showing. I need
to use the Control Key and one of the Right Arrow keys (these
are the keys at the top of the keyboard!) to view the other part
of the screen. (Hmm, if this becomes too cumbersome, I’ll be
connecting the 80 column monitor).

The User’s Guide also states that I have access to 58k of
available RAM (in CP/M terms – TPA, or Transient Program
Area).

The opening screen shows the default user and drive letter (0
is the default and is not shown, drive A is the default disk
drive). Also, according to the manual, I can connect 4 physical
disk drives (lettered A, B, C, and D), and one “logical or virtual
drive”. I’ll investigate that later. I did check out what was
meant by the “default user” and according to the Digital
Research User’s Guide (see pg. 2-4), CP/M files can be divided
into “user” groups. There are 16 users possible numbered from
0 to 15. Here’s what the User’s Guide states,

“CP/M 3 further identifies all files by assigning each one a user
number which ranges from 0 to 15. CP/M assigns the user
number to a file when the file is created. User numbers allow
you to separate your files into sixteen file groups. User
numbers are particularly useful for organizing files on a hard
disk”.

I interpret this as a means of helping to organize when there
are likely to be multiple users (such as in a business
environment of some sort) that use the same machine. I’m
gonna have to investigate the hard drive issue later.

I think I will make a checklist of things I want to do later, so I
don’t forget…I’ll put this at the end of the article for easier
reference.

O.k., back to the manuals. The next titbit mentioned in the
128D User’s Guide mentions that a RAM Expansion module is
accessed as drive ‘M’. This is set up as a RAM Disk. The manual
mentions to reference the User’s Guide for the RAM expansion

unit being used. Since I have a 1750, I checked out the manual
to see what it says. I found another checklist item. Apparently
there is a disk that is supposed to have been included with the
REU for CP/M. I will have to research this since I don’t
remember seeing one with mine (the problems of buying a
used peripheral).

I just found a book in my collection about CP/M – it is book #8
from the Commodore 128 series published by ABACUS. Here is
what I was able to find out about those numbers at the bottom
of the screen…

“You've probably noticed that there are always some numbers
in the lower right corner during loading. Even when the initial
message disappears, these numbers don't go away. The last
line of the screen is the status line, which can't be written on.
The numbers in the corner show which block is being read
from or written to. An R stands for reading from, and a w for
writing to a block. Further down is an A or B message,
indicating the disk drive that's being used. The status line can
be turned on and off with the key combination (p. 25)”.

Now for that error message. I found in the Digital Research
Programmer’s Guide more information on BDOS errors,

“Physical and extended errors are displayed on the console in
the following format:

CP/M Error on d: error message
BDOS function = nn = filename.typ

Page 23

www.commodorefree.com
where d identifies the drive selected when the error condition
is detected; error message identifies the error; nn is the BDOS
function number, and filemane.typ identifies the file specified
by the BDOS function. If the BDOS function did not involve an
FCB, the file information is omitted. Note that the second line
above the error message is displayed only in the banked
version of CP/M 3 if expanded error message reporting is
requested by GENCPM (p. 2-29)”.

O.k., so from this I know the error message means that BDOS (I
found out this acronym stands for Basic Disk Operating
System) is telling me that there is some type of disk error on
drive B. The BDOS function number (14 in this case) is defined
as “Select Disk”. I guess I should have had a disk in the drive
and the latch closed! It seems to me that CP/M will check the
drive for a disk when an attempt is made to switch from the
default drive (or any other drive) which had been placed into
the primary position (as indicated by the prompt). I’ll put BDOS
down on my list of things to get more information on.

So if I summarize what I have researched so far, here is one
way of how I do it...

CP/M (Control Program for Microprocessors) is a system of
organizing information via hardware and software. When
booting the system on a 40 column screen the computer
displays information on the CP/M version number followed by
printing “On Commodore 128", the date, current user number
(0 being the default and is not shown) followed by the current
default drive letter and the status of the disk drive. The user
number and the default drive letter are followed by the right
bracket “>” and is known as the system prompt. This is where
the user enters information called a command. This could be a
system command or a call to a program. CP/M handles
interfacing with disk drives via BDOS (Basic Disk Operating
System).

CP/M on the Commodore 128 includes the following :

There is 59 kilobytes of Transient Program Area (user RAM)
A maximum of 4 disk drives can be connected (512 Megabytes
maximum capacity)
CP/M will recognize a RAM expansion unit (set to drive M)
Recognizes a virtual drive (E)
Can use a 40 or 80 column display.
Other peripheral devices can be connected.

End of Part 2
Commodoreman

CHECKLIST
Hard drive (note: logical drive capacity cannot exceed 512 MB –
CP/M Programmer’s Guide, sec. 1.5, p. 1.11). Find out more
about this feature (can I still get one?)
REU CP/M disk
BDOS
What is the date displayed on startup? Is it the date of the OS
or is it there to represent the current date? If so how do I
change it?

How do I use other peripheral devices (modem, printer,
joystick, etc.)?
What other high-level languages exist (BASIC, FORTRAN, COBOL,
etc.)?

LIST OF RESOURCES
Hardware:
Commodore 128D/1571
1541
1581
1750 REU
1702 Monitor
1902 Monitor

Software:
CP/M System Boot Disk
Genealogy Program
other CP/M formatted disks (copies of system disk)

Printed Material:
Commodore 128D User’s Guide
Commodore 128 Programmer’s Reference Manual
Digital Research User’s Guide (3 books in one)
Commodore 128 CP/M User’s Guide - ABACUS
ISBN#0916439453

Other:
Internet

Page 24

www.commodorefree.com

ASSEMBLER PROGRAMMING
MICRO MART BY SHAUN BEBBINGTON (C)

Author's notes: This is the third lot of tutorials (parts 9 through
to 12 inclusive) that were published in Micro Mart magazine
between February and July 2011 in the 'Specialist' section,
which also includes Amiga, Apple, Linux and gaming news and
views – see www.micromart.co.uk for more information about
this publication.

Disclaimer: The tutorials assume some prior knowledge of
machine code, so you may need to read the last two issues of
Commodore FREE which has parts one through to four and five
through to eight . None of this will not be very useful if you are
not a complete beginner and I'm only providing a foundation
on which to build. I'm sure all of the example code could be
improved greatly. Remember: the more you experimentation
you do with your code, and the more you read up about the
Commodore 64's hardware, the more you will learn. Even
better if you enjoy programming, because this will aid your
progression as much [or more] than anything else.

I retain the copyright for these articles, which are used in
Commodore FREE with permission. If you would like to contact
me about them, then you may do so through the Micro Mart
forums and a link is provided. Without any further ado, here is
the next installment, which covers some of the very basics. The
original images that I provided with the articles are included
for illustration purposes only.

Bitmapping – Part 9
Without delving too far into the secrets of the Commodore 64's
many graphics modes, such as Flexible Line Interpretation
(known as FLI) or the interlaced version [IFLI], the VIC-II chip
sees the screen as 8x8 character blocks by default, but can also
'bit-map' the screen, allowing 64,000 pixels to be manipulated
by the user. Each eight pixels is grouped together in a byte, so
the bit-mapped screen excluding colour RAM is 8,000 bytes of
memory, or just under 8K. By comparison, a screen full of
characters is 8 times smaller, excluding colour nybbles (and
any memory used for user-defined graphics).

Whether you're using plain old characters (or UDGs) or you're
bit-mapping the screen, or using both, you can toggle multi-
coloured mode, which means that the vertical resolution is
essentially halved and the number of colours in an 8x8 pixel
area is doubled from two to four, giving a 'chunky' 160 x 200
pixel matrix. More about this later. For now, we'll just worry
about high-resolution bit-mapping (sometimes referred to as
mono-colour mode).

The first thing that you will need to do when switching on
bitmap mode is to know where your bitmap will reside in
memory. For a full bitmap, there are certain places in RAM
that are used and these cannot be altered at will. You should
also note that when in this mode, each character block on the
text screen is used to define the colour of the pixel area on the
bitmap that it matches (assuming mono-colour, also referred
to as high-resolution). The easiest way to think of this is that
the each character on the normal screen is below each 8x8
pixel area of the bitmap, and affects the foreground and
background colour in each block (pixels that are on or off
respectively). As the C64 has just 16 colours, ranging from 0 to
15 inclusive, the colours are represented by four-bits each, as
this fits exactly into our 8-bit hexadecimal system, so if you

Page 25

www.commodorefree.com
store f3 hex at screen location 1024 (0400 in hex), the two
colours are affected in the corresponding bit of the bitmap
area (top-left 8x8 pixel block in this case, assuming your
bitmap resides at memory location 8192 onwards). How the
colours are worked out is to split the byte into four bits, so f
hex is equal to 15 decimal, which is light grey, and 3 hex is
exactly the same as it would be in decimal, which is cyan.
Therefore the pixels switched off in the block will be cyan and
those switched on will be light grey.
Let's have a look at a quick example of a high-resolution
bitmap then in assembly:

*=$c000 ; Where our program resides in memory
lda #$60
sta $fc
lda #$00
sta $fb ; This will indirectly index the bitmap RAM
lda $d011 ; The following sets up hi-resolution

bitmap
ora #%00100000
sta $d011
lda $dd00
and #%11111100
ora #%00000010
sta $dd00
lda #$5c
sta $0288
lda #$79
sta $d018
lda #$f3 ; This is our default colour setting
ldy #$00

DEFCOL ; Sets up default colour to new screen area
sta $5c00,y
sta $5d00,y
sta $5e00,y
sta $5f00,y
iny
bne DEFCOL
lda #%10000001 ; This will be our default pattern
ldy #$00
sty $d020 ; Sets the border colour according to Y

index
ldx #$20 ; How many pages of RAM we'll be using

LOOP ; This will set our default pattern as above
sta ($fb),y ; if A was set to zero, it would clear all

bits
iny
bne LOOP
inc $fc
dex ; We've set one page, X is decreased
bne LOOP ; This will check if X is zero.

HOLD ; Marker for unconditional infinite loop
 jmp HOLD ; Infinite loop

Run it by using SYS 49152 and you should see something that
looks a little like rather sickening stripy wall paper. To find out
more about mono-colour bitmaps, please email me or check
out tinyurl.com/C64-Coding.

Banks and sprites – Part 10

Recapping on last week, I briefly described bit-mapping the
screen on the Commodore 64, and gave a quick example of
displaying a not-very-exciting high-resolution image that could
be said to resemble some rather horrid looking stripy wall
paper. Hopefully, you had the chance to play around with the
example and change the colours and the bit pattern displayed.

You may have noticed that bit-mapping, like re-defining the
character set, requires you to change the VIC-II memory
pointers so it 'sees' the relevant 16K bank of RAM, so in other
words, if you were going to use last week’s example for a basis
to display a title or splash screen, and you had user defined
graphics (UDGs) in your project too, you'd have to ensure your
UDGs where in the same bank as the bit-map when reverting
to text display whilst remembering that all characters should
be written to 5C00 in hexadecimal, unless of course you were
to change the pointer in the VIC-II afterwards to a different
bank. It's therefore easy to guess that memory management is
an issue when creating your C64 project, although there's
nothing that is insurmountable without a bit of forward
thinking, which is where a pencil and paper proves useful. Here
is some example code of changing the bank:

BANKSWITCH
lda $dd00 ; This memory location is used for bank

switching on the VIC-II chip
and #%11111100 ; We only need bits 0 and 1, so we'll

leave bits 2 - 7 unaltered
ora #%00000010 ; and then 'or' the value with the bank

that we want to see
sta $dd00 ; and now we should write the new value

back to location DD00 hexadecimal
 rts

So, if you want the default bank on start-up (VIC bank zero,
memory location 0 to 3FFF hex), you'd change the third line of
the above code to:

ora #%00000011

For VIC bank one (located from 4000 to 7FFF hexadecimal), the
value would be as in the code example above, bank two
(starting at 8000 through to BFFF hex), the value would be
#%00000001 and finally bank three (C000 to FFFF hex) would
be #%00000000. Of course, each change will alter where the
character screen and bit-map screen is in RAM - more about
this on the forums at tinyurl.com/C64-Coding, where you may
pose any questions to me. As it's not possible to go too far in-
depth through these pages, it's worth reading up about
memory management by searching the vast Internet for
information, but a good site covering such subject matters is at
codebase64.org.

Looking Spritely
Another feature of the host graphics chip is hardware sprites.
Note that 'sprites' are sometimes referred to as Movable
Object Blocks (MOBs) in some literature.

Without worrying about advanced programming techniques
such as multi-plexing or anything fancy like that, the C64 can

Page 26

www.commodorefree.com
display eight sprites on a single screen regardless of which
screen mode you've set. To be more precise, the VIC-II is able
to handle eight sprites per scan-line (sometimes referred to as
a raster-line or raster-beam), but we needn't concern
ourselves with this at the moment.

As with bit-mapping or the default screen mode, everything
has its' place, so each sprite must start at specific locations in
the memory bank that the VIC-II is pointing to.

Each sprite is made up of 24 pixels by 21 pixels in mono-colour
(high-resolution) mode, with multi-colour mode halving the
vertical resolution, meaning 12 by 21 pixels. There is quite ver-
satile handling too, as each [sprite] may be expanded horizon-
tally, vertically or both, and is automatically layered based on a
pre-set of zero through to seven. And regardless of how
chunky you have set your MOBs, you are still able to move
them horizontally or vertically one single pixel at a time based
on the default visible area of 320 by 200 pixels, which is quite
good as it always ensures smooth movements even if the
graphics have that 'blocky' look about them. You may also set
the priority of each sprite to say whether or not it is in front of
or behind the characters on the screen or the bit-mapped, but
you are not able to change the way one sprite may over or un-
der lap another as this is set by the hardware. I have a brief
sprite demonstration next time as unfortunately we've ran out
of space for a coding example.

A C64 sprite editor

More on sprites – Part 11
Last week, I briefly introduced hardware sprites on the
Commodore 64, so as there wasn't much time or space for a
piece of example code, I thought that I'll throw one straight at
you, with some explanations on the forums at
tinyurl.com/C64-Coding. Here's this week’s routine:

*=$1000
lda #$0d ; Using block 13 for sprite zero
sta $07f8
lda #%00000001 ; Enable sprite zero
sta $d015
lda #$05 ; We'll colour it green
sta $d027
lda #%11100111 ; Our bit pattern for the sprite (repeated)

ldx #$40 ; X is used as a counter
SETUP

dex
sta $0340,x
bne SETUP ; Builds the sprite
lda #%00000000
sta $d010 ; This clears the MSB setting for all sprites
ldx #$64
ldy #$70
stx $d000 ; X position set
sty $d001 ; Y position set

SCAN
jsr $ff9f ; Scans keyboards
jsr $ffe4 ; Put relevant value into A

START
cmp #$57 ; W is up
beq MOVEUP ; If true, move sprite up...
cmp #$53 ; S is down
beq MOVEDOWN ; etc...
cmp #$41 ; A is left
beq MOVELEFT
cmp #$44 ; D is right
beq MOVERIGHT
cmp #$0d ; Checks is the RETURN key is pressed
beq EXIT ; If so, we'll exit
jmp SCAN ; Back to loop marker

MOVEUP
ldy $d001 ; Gets previous Y position
dey ; Decreases by one
sty $d001 ; Stores new value
jmp SCAN

MOVEDOWN
ldy $d001
iny
sty $d001
jmp SCAN

MOVELEFT
ldx $d000
dex
stx $d000
cpx #$ff ; Checks for horizontal position moving left
bne SCAN
lda #%00000000
sta $d010 ; Clears MSB for horizontal position
jmp SCAN

MOVERIGHT
ldx $d000
inx
stx $d000
cpx #$00 ; Checks for horizontal position moving right
bne SCAN
lda #%00000001
sta $d010 ; Sets MSB for horizontal position
jmp SCAN

EXIT
jsr $e544
lda #$00
sta $d015 ; Switches off sprites

 rts ; Back to BASIC

Page 27

www.commodorefree.com
Once it's assembled, the program assumes that the VIC-II is
looking at the default 16K bank as explained last week. For
completeness, however, you may add the code to force the
graphics chip to see bank zero, but try changing the banks
anyway to see what happens. Run the routine by SYS 4096,
and use the keyboard to move the simple sprite around the
screed, W is up, S is down, D moves right and A moves left and
RETURN exits the example program. Fortunately, I'll be
covering reading the joystick port next week, and as space is at
a premium, I'll leave it there. As mentioned, send over your
question that you have and I'll answer them as best I can.

The joys of movement - Part 12
We've reached the final instalment of these tutorials, so I hope
that you've enjoyed your first steps into the mystical world of
machine code programming. But it needn't end here; there is
the accompanying thread over on the Micro Mart forums at
tinyurl.com/C64-Coding, and even though this beginners guide
ends here, I'll still endeavour to answer any questions that you
have. Remember that the more you experiment, the more you
will learn!

You may have noticed that I haven't covered the Commodore
64's diverse sound capabilities. This is simply because covering
such a subject would take at least 12 instalments by itself. But
as you are now getting to grips with assembly language, take a
look at tinyurl.com/6ehvk54.

Last week’s example demonstrated moving a sprite around the
screen using the keyboard. Now we all know that the C64 has
two joystick ports, so it makes sense to use them.

The two joystick ports are read into memory locations dc00
and dc01 hexadecimal, which represents ports two and one
respectively. You'll note that most games use the second port,
but if you want to use the other then there's really nothing
stopping you, as the difference is only in the memory location
that you're reading and not in how it works.

The C64, like most 8-bits, used 8-way, digital controllers with a
single fire button, a standard set by the Atari with its 2600
console. This makes sense as most classic games don't require
more than 8 directional controls, and some don't use more
than two. Each direction is read as one or two bits in memory
and fire as required. Reading a binary octet from right to left,
the zero-bit is up, bit one is down, bit two is left and bit three
is right. The forth bit is set when fire is depressed. To test

which direction is set, we can use an 'And' gate, for instance:

READJOY
 lda $dc00 ; We're testing port two here
 and #%00000001 ; Check for up

beq MOVEUP
 lda $dc00
 and #%00000010 ; Check for down
 beq MOVEDOWN
 lda $dc00

and #%00000100 ; Check for left
 beq MOVELEFT
 lda $dc00
 and #%00001000 ; Check for right
 beq MOVERIGHT
 lda $dc00
 and #%00010000 ; Check for fire
 beq FIRE

This technique is fine, but there's a more efficient way of doing
things. What we can do is to 'roll' the accumulator so that each
bit shifts to the right, so any bits that essentially 'fall off the
end' will be put onto the processor stack and the carry flag will
be set. So, if you logically shift the following bit pattern to the
right: %00000010, the new value will be %00000001. Do it
again, and you will get %00000000 + carry flag set. Here's an
example:

READJOY
 clc ; It's good practice to clear the carry flag testing it
 lda $dc01 ; Okay, we'll try port one this time
 lsr a ; Logical shift RIGHT
 bcs MOVEUP ; Branch on Carry Set
 lsr a
 bcs MOVEDOWN

lsr a
bcs MOVELEFT
lsr a
bcs MOVERIGHT
lsr a

 bcs FIRE

This is more efficient that the first example, plus has other
benefits too, which is discussed on the forum thread
mentioned above. The important thing to remember is that it's
up to you as to how you write your code, as the first thing to
worry about is to get it working.

See if you can use either example this week with the code last
week and replace the keyboard controls with either joystick
port. You may need to slow things down a little as machine
code is many times quicker than BASIC. There was a way to do
this much earlier in the
series, but you know what
to do if you get stuck.
Whatever happens, keep
on coding as it can be the
most rewarding thing that
you can do with your old
Commodore. Bye for now!

Issue 60
2012

Editor
Nigel Parker

Spell Checking
Peter Badrick

Text & HTML Conversion
Paul Davis

D64 Disk Image
Al Jackson

PDF Design
Nigel Parker

Website
www.commodorefree.com

Email Address
commodorefree@commodorefree.com

Submissions
Articles are always wanted for the magazine. Contact

us for details .We can’t pay you for your efforts but you are safe in the knowledge that
you have passed on details that will interest other Commodore enthusiasts.

Notices
All materials in this magazine are the property of Commodore Free unless otherwise

stated. All copyrights, trademarks, trade names, internet domain
names or other similar rights are acknowledged. No part of this magazine may

be reproduced without permission.
The appearance of an advert in the magazine does not necessarily mean that the

goods/services advertised are associated with or endorsed by Commodore Free Magazine.
Copyright

Copyright © 2011 Commodore Free Magazine

